Project Euler 1-10
Problem 1
If we list all the natural numbers below 10 that are multiples of 3 or 5, we get 3, 5, 6 and 9. The sum of these multiples is 23. Find the sum of all the multiples of 3 or 5 below 1000.
fn problem_1() -> i64 {
let mut xs = vec!();
for i in 1..1000 {
if i % 3 == 0 || i % 5 == 0 {
xs.push(i)
}
}
xs.iter().sum()
}
Problem 2
Each new term in the Fibonacci sequence is generated by adding the previous two terms. By starting with 1 and 2, the first 10 terms will be: 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, … By considering the terms in the Fibonacci sequence whose values do not exceed four million, find the sum of the even-valued terms.
fn problem_2() -> i64 {
let mut fib = vec![1, 2];
let mut a = 1;
let mut b = 2;
let mut c;
let limit = 4_000_000;
loop {
c = a + b;
a = b;
b = c;
if c > limit { break; }
fib.push(c);
}
fib.iter().filter(|&x| x % 2 == 0).sum()
}
Problem 3
The prime factors of 13195 are 5, 7, 13 and 29. What is the largest prime factor of the number 600851475143 ?
fn problem_3() -> i64 {
let n: i64 = 600851475143;
let mut primes = vec!();
let mut t = n;
let mut i = 2;
loop {
if t % i == 0 {
t = t / i;
primes.push(i);
}
if t <= 1 {
break
}
i += 1;
}
primes[primes.len()-1]
}
Problem 4
A palindromic number reads the same both ways. The largest palindrome made from the product of two 2-digit numbers is 9009 = 91 × 99. Find the largest palindrome made from the product of two 3-digit numbers.
fn is_palindrome(n: i64) -> bool {
let n_str = n.to_string();
let n_len = n_str.len() as i64;
if n_len < 2 {
return false;
}
let half: i64 = n_len / 2;
for i in 0..half {
if n_str.chars().nth(i as usize) != n_str.chars().nth((n_len - 1 - i) as usize) {
return false;
}
}
true
}
fn problem_4() -> i64 {
let mut palindrome = 0;
for i in (0..999).rev() {
for j in (0..999).rev() {
let t = i * j;
if is_palindrome(t) {
palindrome = cmp::max(palindrome, t);
}
}
}
palindrome
}
Problem 5
2520 is the smallest number that can be divided by each of the numbers from 1 to 10 without any remainder. What is the smallest positive number that is evenly divisible by all of the numbers from 1 to 20?
fn problem_5() -> i64 {
let mut c = 1;
let h = 20;
let p = get_primes(20);
let mut prime_product = 1;
for i in p {
prime_product = prime_product * i;
}
let mut x;
loop {
x = prime_product * c;
c += 1;
let mut divisible = true;
for i in 2..h {
if x % i != 0 {
divisible = false;
break
}
}
if divisible { break }
}
x
}
Problem 6
Find the difference between the sum of the squares of the first one hundred natural numbers and the square of the sum.
fn problem_6() -> i64 {
let n = 100;
let mut sum_sq = 0;
let mut sum = 0;
// sum of squares
for i in 1..(n+1) {
// println!("{}", i);
sum_sq += i*i;
sum += i;
}
sum * sum - sum_sq
}
Problem 7
What is the 10 001st prime number?
fn problem_7() -> i64 {
let p = get_primes(120000);
p[10_001-1]
}
Problem 8
Find the thirteen adjacent digits in the 1000-digit number that have the greatest product. What is the value of this product?
fn problem_8() -> i64 {
let n = 13;
let digits = "73167176531330624919225119674426574742355349194934
96983520312774506326239578318016984801869478851843
85861560789112949495459501737958331952853208805511
12540698747158523863050715693290963295227443043557
66896648950445244523161731856403098711121722383113
62229893423380308135336276614282806444486645238749
30358907296290491560440772390713810515859307960866
70172427121883998797908792274921901699720888093776
65727333001053367881220235421809751254540594752243
52584907711670556013604839586446706324415722155397
53697817977846174064955149290862569321978468622482
83972241375657056057490261407972968652414535100474
82166370484403199890008895243450658541227588666881
16427171479924442928230863465674813919123162824586
17866458359124566529476545682848912883142607690042
24219022671055626321111109370544217506941658960408
07198403850962455444362981230987879927244284909188
84580156166097919133875499200524063689912560717606
05886116467109405077541002256983155200055935729725
71636269561882670428252483600823257530420752963450";
let digits2 = &digits.replace("\n", "");
// convert to vec
let mut array = vec!();
for i in 0..digits2.len() {
let ch = digits2.chars().nth(i).unwrap();
array.push(ch.to_digit(10).unwrap());
}
let mut max = 0;
let mut i = 0;
loop {
if i + 13 > array.len() {
break
}
let mut sum: i64 = 1;
for j in i..(i+n) {
sum = sum * array[j] as i64;
max = cmp::max(max, sum);
}
i += 1;
}
max as i64
}
Problem 9
There exists exactly one Pythagorean triplet for which a + b + c = 1000. Find the product abc.
fn problem_9() -> i64 {
let n = 200000;
let mut i = 0;
let mut seq = vec!();
loop {
let j = i*i;
if j > n { break }
seq.push(j);
i += 1;
}
for i in 0..seq.len() {
for j in i..seq.len() {
let s = i*i + j*j;
let k_res = seq.binary_search_by(|probe| probe.cmp(&s));
if k_res.is_ok() {
let k = k_res.unwrap();
let sum = i + j + k;
if sum == 1000 {
return (i*j*k) as i64;
}
}
}
}
0
}
Problem 10
Find the sum of all the primes below two million.
fn problem_10() -> i64 {
let n = 2_000_000;
let primes = get_primes(n);
let mut s = 0;
for p in primes.iter() {
if *p > n { break }
s += p;
}
s
}
Helpers
use std::collections::HashSet;
use std::cmp;
fn get_primes(n: i64) -> Vec<i64> {
let mut primes: Vec<i64> = vec!();
let mut not_primes = vec![1; (n+2) as usize];
let mut i = 2;
loop {
if not_primes[i] == 1 {
primes.push(i as i64);
let mut j = i;
loop {
j += i;
if j > (n as usize) { break }
not_primes[j] = 0;
}
}
i += 1;
if i > (n as usize) { break }
}
primes
}